Fire resistance cable YTTW
YTTW cable is designed for aboveground applications.
Engineered to replace conduit and wire applications, this all-in-one cable assembly offers fewer installation steps.
The copper metallic sheath protects the conductors from damage before,during and after installation and provides overall flexibility not available with a conduit.
Rated working voltage:
– Light Duty: 500 V
– Testing Voltage (50 Hz): 2500 V - 15 min
– Heavy Duty: 750 V
– Testing Voltage (50 Hz): 2000 V - 15 min
— Flame Retardant — High Operating Temperatures — LSOH Halogen-free — Great Mechanical Strength — Competitive Installed Cost — Public Places |
Our YTTW cables provide outstanding electrical and fire-proof properties, and are halogen free.
|
National | International | |
Construction | GB/T 12706 | IEC 60502 |
Non fire-propagating | GB/T 18380.3 | IEC 60332-3 |
Low opacity of smoke emitted | GB/T 17651.2 | IEC 61034-2 |
Fire-resistant | GB/T 12666.6 | IEC 60331 |
Low acidity and corrosiveness of gases | GB/T 17650.2 | IEC 60754-2 |
Halogen free | GB/T 17650.2 | IEC 60754-1 |
Non flame-propagating | GB/T 18380.1 | IEC 60332-1-2 |
Conductor | Stranded copper conductor class 2 | |
Insulation | mica tape1, flame retardant | |
Filler | Glass yarns | |
core wraping | Core wrapping with glass-fibre tape as flame-protection | |
Sheath | Corrugated Copper | |
Outer covering (Optional) | Anticorrosion Outer Sheath PVC |
Service Temperature | 90°C |
Emergency Overload Temperature | 105°C |
Short-Circuit Temperature | 250°C |
Laying Temperature | should not be lower than 0°C |
Minimum bending radius when laying | Single core: r = 6 x cable outer diameter |
Sheath colour | The standard color is orange, other colors are available. |
Nominal cross Section |
Nominal insulation thickness |
Thickness of metallic sheath |
Outer Diameter approx. |
current carrying capacity |
Voltage drop |
mm2 | mm | mm | mm | A | V/A.km |
1×1.0 | 0.80 | 0.40 | 3.53 | - | 23.10 |
1×1.5 | 0.80 | 0.40 | 3.78 | 32 | 15.40 |
1×2.5 | 0.80 | 0.40 | 4.18 | 42 | 9.48 |
1×4.0 | 0.80 | 0.50 | 4.85 | 56 | 5.90 |
1×6.0 | 0.80 | 0.50 | 5.36 | 70 | 3.90 |
1×10 | 1.00 | 0.50 | 7.02 | 97 | 2.33 |
1×16 | 1.00 | 0.60 | 8.24 | 125 | 1.47 |
1×25 | 1.00 | 0.60 | 9.56 | 165 | 0.92 |
1×35 | 1.00 | 0.60 | 10.70 | 200 | 0.67 |
1×50 | 1.20 | 0.70 | 12.60 | 245 | 0.49 |
1×70 | 1.20 | 0.70 | 14.40 | 305 | 0.34 |
1×95 | 1.20 | 0.80 | 16.50 | 375 | 0.25 |
1×120 | 1.20 | 0.80 | 18.14 | 435 | 0.20 |
1×150 | 1.40 | 0.80 | 20.15 | 500 | 0.16 |
1×185 | 1.40 | 0.90 | 22.10 | 580 | 0.13 |
1×240 | 1.40 | 0.90 | 24.85 | 685 | 0.10 |
1×300 | 1.60 | 1.00 | 27.70 | 795 | 0.08 |
1×400 | 1.60 | 1.00 | 30.40 | 930 | 0.06 |
Notes:
Ampacities based on 90°C conductor temperature and 40°C ambient temperature according to IEC 287 standard
The voltage drop based on conductor temperature 90°C is on the high side calculated only for reference
When the cable adopt compressed cores, diameter of cable should be 95% of normal diameter, diameter of metallic sheath should be adjusted correspondingly. When enhancing the insulation, outer diameter of cable is increased for about 5%.
1 Glass cloth reinforced Muscovite mica tape
2 Current ratings in Ampere (A) up to 30° C ambient temperature